Veneer

Lead Developer: Jack Littrell

The lack of standardization in how cell surface proteomics have been analyzed and reported presents challenges to comparing methodologies, datasets, and inspiring confidence in claims of subcellular localization. Veneer provides a solution to this problem.

Veneer is an automated, standardized solution for curation, classification, annotation and reporting of data generated by μCSC and related workflows

Veneer features:

  • Reliance on gene ontology terms and database annotations are avoided by using experimental evidence and applying stringent criteria to accurately classify identified proteins as cell surface N-glycoproteins.

  • Veneer output provides easy access to N-glycosite information that is valuable for determining the orientation of uncharacterized transmembrane proteins, which is essential for informing downstream antibody development.

  • Veneer processes qualitative and quantitative μCSC and related datasets (experiments that include deglycosylation with PNGase F).

  • Inputs/outputs are agnostic of vendor or platform used for data acquisition or database searching.

  • Veneer can be applied to re-process published data to assess levels of confidence in prior claims of surface localization. Veneer can be applied to other N-glycoprotein or N-glycopeptide enrichment strategies including ligand receptor capture and methods that incorporate, biocytin hydrazide, aminooxy biotin, and alkoxyamine-PEG4-biotin.

Reference:

Newest Version: Berg Luecke L, Mesidor Roneldine, Littrell J, Carpenter M, Wojtkiewicz M, Gundry RL, Veneer Is a Webtool for Rapid, Standardized, and Transparent Interpretation, Annotation, and Reporting of Mammalian Cell Surface N-Glycocapture Data, Journal of Proteome Research, 2024. PMID: 38412263.

Version 1: Berg Luecke L, Waas M, Littrell J, Castro C, Wojtkiewicz M, Burkovetskaya M, Schuette EN, Buchberger AR, Mahr C, Anderson DA, Boheler KR, Gundry RL, Surfaceome mapping of primary human heart cells with CellSurfer uncovers a novel cardiomyocyte marker and proteome dynamics when culturing cells, Nature Cardiovascular Research, 2023. PMID: 36950336.